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Solutions that are asymptotic with respect to the equilibrium for a 
Hamiltonian system with a first-order resonance are considered. The 
Hamiltonian function is assumed to be analytic in the neighbourhood of 
the equilibrium and Pn-periodic in time or time-independent. The 
analysis is carried out by the method described in /l-3/. The case of a 
Hamiltonian system with one degree of freedom is investigated in detail. 
For multidimensional Hamiltonian systems, sufficient conditions for the 
existence of asymptotic solutions and their approximate analytical 
representation are derived. 

1. Consider a Hamiltonian system of ordinary differential equations 

dq dH dp i?H 
df=---’ @lJ -x=-q- Wl 

Assume that the origin q = p = 0 is an equilibrium of this system and that the 
Hamiltonian function H can be represented in a sufficiently small neighbourhood of the origin 
by a convergent series 

where Ht is a homogeneous form of degree k in q, p with coefficients that are continuous 
2n-periodic in t. 

We assume that both roots of the characteristic equation of the linearized system (1.1) 
equal unity, i.e., the case of first-order resonance /4[. 

We consider the existence and analytical construction of the solutions of system (1.1) 
that asymptotically converge to the origin as t++cQ. In Sect.4, the results obtained for 
system (1.1) are partially extended to multidimensional Hamiltonian systems with a simple 
first-order resonance. 

The classical theory of asymptotic solutions 15, 6/ is applicable only when the linearized 
system has at least one non-zero characteristic value. The problem of solutions that are 
asymptotic with respect to the equilibrium of the Hamiltonian system with all zero character- 
istic values was considered in 11-31. The corresponding methods are used below. 

2. The problem of asymptotic solutions of system (1.1) is investigated for two separate 
cases. First let us consider the case of simple elementary divisors of the characteristic 
matrix of the linearized system (1.1). In this case, the Hamiltonian function (1.2) can be 
reduced by an appropriate change of variables (e.g.,by Birkhoff transformation /7/) to the 
normal form /4/ 

H = @ (cp) r='Z + H(M*') (r, cp, t) (M > 3) 

@(~)=~UjSiO’t$COS-“-‘~ 

(2.1) 

q=f/Z;:sincp, p= v/2;COScp, 
(2.2) 

J-0 

Here aj are constant coefficients and H(M+l),are terms of order higher than M in 6; and 
an-periodic in t and 'p. 

Making a non-canonical change of variables 
motion in the form 

r = p2, 'p = 0, we obtain the equations of 
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where F (0) = -d@ (8)/ 88. The functions P and R are analytic in the neighbourhood of the 
origin and their series expansions in powers of p start with terms of degree not lower than 
W-Q and 19, respectively; P and R are periodic in El and t and tend to zero uniformly 
in these variables as p-to- 

The theory of analysis of the neighbourhood of a singular point developed in /8/ is 
applicable to system (2.3). On the basis of this theory, we can conclude, as in /1, 2/, that 
the trajectories of the system in the plane x==pcos@, # = psin 8 may enter the origin only 
in directions defined by the angles 0,, where 8* is the real root of the equation @@I)=(). 
To each simple root 0% there corresponds a unique integral curve that enters the origin as 
t++oo (if F@,)<O} or as t-+--m (if F@,)>O), because in this case we have 
F (e,)d'D(0,)/ d0 < 0. If 8, is a multiple root, then the existence of asymptotic trajectories 
corresponding to,this root is decided by terms of order not higher than M in fi in the 
expansion of the Hamiltonian (2.1). 

It can be shown that if 8* is a real root of the equation CD (8); 0, then 16, + al 
(mod 2%) is also a real root of this equation. The number of roots is obviously always even 
or zero. The maximum number of roots is 2M. 

If the equation @(PO) = 0 has no real roots, then /9/ the point g =p = 0 is encircled 
by invariant curves that pass as close as desired to this point /lo, ll/. Therefore, 
trajectories asymptotic to the origin do not exist, because otherwise the uniqueness of the 
Cauchy problem would be violated. 

We will investigate the analytical structure of the asymptotic solutions using Zubov's 
results /12/. We will briefly review them here. Consider the system 

The functions Y, are expanded in series, 

that converge fox Iz ~<z,~z,>O is a constant, 1 yj I < y,, (j = 1, . . ., n). The functions s,j ('& 

a, (%), Aimm,m"""n'n) (T) are real, continuous, and bounded for @<a < 1. 
Denote by I, pr, . . ., p,, the characteristic values of the system 

dY 
II 

dt 
-_=-_z, 
dri 

-2- = - )’ aej (0) yj - at (e-n) 2 
dr) 

j=*' 

(2.6) 

Theorem 1121. If pr>O for k,<l and system (2.6) is regular, then the system of 
Eqs.(2.1) has a family of solutions that depends on 2 arbitrary constants and can be represented 
in the form of the series 

that converge for 17 i<‘b 16 i<Co (i = f~,& . .., l)$ where r0 is a fairly small quantity, 
c* = const, and Q%"" . ..sy. (c)@+0 as r-+0, where a>0 is a constant. 

Consider the question of the analytical construction of asymptotic solutions. Change 

to Cartesian coordinates by the formulas 2 = pcos6, # = psin8. The equations of motion in 
the new variables take the form 

akky%P’-k + X(x, y, t) (2.8) 
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where X and Y are functions that are 2n-periodic in t and analytic in X, $+, and their Series 
expansions start with terms of degree not lower than IV. 

bet us first consider the asymptotic solutions of the truncated system, which is obtained 
from system (2.81 if the terms .%(x,y,&Y(z,g,t) are omitted on the right-hand sides of its 
equations. To each simple root of the equation Q, (8) = 0 there corresponds a family of 
asymptotic solutions of the truncated systems 

s (r) = 5 (0) ~08 e, r~osM-oe, - v, (M- 2) P (f+*) 9-p (0) tl-t'(w-~J 

y (t) = y (0)sin $+ Isis@-* e * - ‘i,(M - 2) F(6,) yA4-" (0) tl-"(x-*) 

(2.9 

We will show that in the full system (2.8) a one-parameter family of asymptotic solutions 
also corresponds to each simple root et. Given the structure of the solution (2.8) and in 
order to apply Zubov's theorem /12f to the problem, we make the change of variables s,g, t-c 

Y,* & r by the formulas 

5 = t(y, + a), y = r(yg. + A), r = @/{M-e (2.10) 

a = A cos I&, b = A sin e,, A = ('i&V - 2) JI: (0,) (I-‘NM-*’ 

In the new variables, system (2.4) takes the form 

(2.11) 

(6i = --t (M - 2) fi (4, 6, 7-l) + Yi (n, y,, T), i = ~2 

where j*(x,#,t) are terms of degree M in the expansion in powers of X, y of the functions 
X and Y respectively, and the functions Yi can be represented by series of the form f2.5). 

If Y, and Y,x are omitted on the right-hand sides of system (2.111 and we make the 
change of independent variable n = --In%, then the result is a linear system of the form 
(2.6). This system is regular and its characteristic values are f,(i%f--2), -M. Thus, by 
Zubov's theorem we can assert that system 12.11) has a one-parameter family of solutions, 
which can be represented by series of the form (2.7). 

In the variables I, y, t, for sufficiently large 11 /, tie obtain the following 
representation of asymptotic solutions of System (2.8) that correspond to the root 8,: 

s = e$-U(~-s) + *((t,c)t-"OM-tt, y = At-"/@f-8) + x(& c,)@'(Ac-2) 
(2.12) 

Ip (t, e) and X(& c) are functions of time and the arbitrary constant c and they are 
uniformly bounded for sufficiently large 111. 

If all the roots of the equation Q(e) = 0 are simple, then obviously other asynptotic 
solutions do not exist. 

3. Wow let us investigate the problem of asymptotic solutions of system (1.1) for the 
case of multipIe elementary divisors of the characteristic matrix of the linearized system. 
In this case, 
/4, 13/ 

the Hamiltonian function normalized to terms of order H in q, p has the form 

where w, 0 is a constant real coefficient and 
of time. 

&e(t) are continuous 2n-periodic functions 

A complete qualitative analysis of the solutions asymptotic to the equilibrium of system 
(1.1) with the Hamiltonian (3.11 has been carried out in /13/. 

The asymptotic solutions of the truncated system with the Hamiltonian H0 have the form 
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where c is an arbitrary 

In formulas (3.21, 
sign to t-t --00 (t < e). 

constant and d is the real root of the equation 

&w-z.+ (-& l)M2=rf(M - 2)M a&&P-']-1 = 0 (3.3) 
13.3) the upper sign corresponds to t-+ +m (t> -c) and the lower 

To obtain an analytical representation of the asymptotic solutions of system (1.11, given 
the structure of the solution (3.2), we make the change of variables 

4 = Thf (J + d), p = 22 (y + g), z = tlI(M-P) 

In the new variables x> Y, r * the complete system (1.1) with the Hamiltonian (3.1) is 

TdX/& = -Mx - Me_M,o (M - 1) (M- 2) gM-%I + x, (3, y, z) 

rdyidz = -2y + 6fM -2)x -+X, (I, y, z) 
(3.4) 

where Xi (i = 1, 2) are functions of type (2.5). 
Zubov's theorem can be applied to system 13.4). Indeed, the linear system (2.6) 

corresponding to (3.4) is regular and its characteristic values are 1, (M-2) and -2M. 
System (3.4) thus has a one-parameter family of asymptotic solutions that can be represented 
as series of the form (2.7). 

In the variables q, p, t, for sufficiently large ] t /, we obtain the following represen- 
tation of the asymptotic solutions of (1.1) with the Hamiltonian (3.1), which enter the 
origin as t-+-+-m as t-+-co: 

q =: &-M/W-2) -+ x(t, c) t- ew/W2), p = gt-wf-2) +q (t, c) t-l/W-*) (3.5) 

where x (t, c), and n(t, c) are functions of tine and the arbitrary constant e and they are 
uniformly bounded for sufficiently large 11 1. 

4. Let us briefly consider the existence and analytical construction of solutions 
asymptotic to the equilibrium of the Hamiltonian system with n(n>2) degrees of freedom and 
a first-order resonance. 

Suppose we are given the Hamiltonian system of differential equations 

dqJdt = i3Hl8pi, dpildt = --f?Hl@~ (i = 1, 2, . . ., n) (4.1) 

and the origin qr =i pi = 0 (t = 1, 2, . .., nf is an equilibrium of this system. In the neighbour- 
hood of pi =pi = 0 the W~iltonian function X is analytic and an-periodic in t or independent 
of t. Consider the problem of the solutions of system (4.1) which are asymptotic to its 
equilibrium 43 = pi = 0. We will assume that all the characteristic exponents -l-Lx of the 
linearized system have zero real parts. We also assume a first-order resonance in system 
(4.1), i.e., 

VP+. r, = TZ (0) r-211 (4.2) 

where N is an integer (if H is time independent, then N ~0). Without loss of generality, 
we may henceforth assume ic = 1. 

With an appropriate choice of the variables 4t, Pi‘ (e-g., using the Birkhoff trans- 
formation .D3/ or the Depri-Khuri method /14/l, the Hamiltonian function H may be reduced to 
the following form fg, 15~': 

a) for the case of simple elementary divisors of the characteristic matrix of the 
linearized system (4.1), 

b) for the case of multiple eI.ementary divisors of the characteristic matrix of the 
linearized system 14.1), 

(4.3) 
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where aM,, am-12,a, h and bJ, (I are real constants; square brackets denote the operation of 
taking the integer part of the number. We assume that the normalization is carried out for 
orders M, and M,, such that UB~,(~)J~ 0 and aM.#O, respectively. We denote by O,, 
and 0~. respectively terms of order higher than M,and MS in qi, pi (i = 1, . . ., n). 

We make a canonical change of variables 

pi = ri, Bi = U,t + ‘pi (i = 2, . . ., n) 

In the new canonical variables, the Hamiltonians (4.3) and (4.4) respectively take the 
form 

(4.5) 

(4.6) 

First consider the truncated system formed by omitting in the Hamiltonian functions 
(4.5) and (4.6) terms of degree higher than M,and M, in 1/c* l/L and Qlt PI, l/G (i = 2, 
3, . .t 4 , respectively. Direct integration gives the following results. 

a) Simp’le eZementary divisors. To each simple root 'p* of the equation (P&f, (w) = 0 
there corresponds a one-parameter family of solutions asymptotic as t+ +m (if d% (cur)/ 
dq, > 0) or as t+-cc (if dOM,(cpz)/dql < 0) to the origin qi = pi = 0 (i = 1, . ., n): 

‘pl = VP*, r, = r, (0) 0/(M-*) I, n\ 

(j = 2 . . . 4 

b) MuZtipLe ekmentary divisors. If M, is odd, then two one-parameter families of 
solutions exist (one family as t+ +w and one family as t-t-m) asymptotic to the 
origin, 

q1 = d (c * Q-W(.M-2, ( p1 = q (c * t)-2/=2) (4.8) 

ln=3 

4n 0) = ( @-2m-Pm-2), J.f, + 2m - 2 

In t, M, =2m-2 

pj = 0, Cti = (07 . . ., OLjq . . ., 0), CZj = 1 (i = 2, . ., n) 

where c is an arbitrary constant and d and 9 are given by formulas (3.2) and (3.3). 
If M, is even and a&CO, then four one-parameter families of asymptotic solutions 

exist (two families as t-L+?= and two families as t+ -&) of the form (4.8). 
For simplicity, let M, = 3,M2 = 4. Using the structure of solutions of the truncated 

system and applying Zubov's theorem, we can prove the existence of asymptotic solutions of 
the complete system (4.11, which are approximately represented by formulas (4.7) and (4.8). 
To this end we need to make the change of variables 

a) pi= 7*yi, II+ = 2@ l,,i(cpz)[(d~,(cp,))/d~,]-llnz-' + xi (i = 2, . . . . n), (4.9) 
rl = ~"(4[(d~,(cp*))ld~,l-2+ ~~1 

'P1=C$*+z,,t=l- 

(4.10) 
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where 'p* is the root of the equation @a(&= 0, a* = (0, . . . . ai,..., 0), or, = 1. 
Zubov’s theorem can be applied to the system obtained by this change of variables, as 

in Sects.2 and 3. 
For iM,>3 and iv,>4, the proof of the existence of asymptotic solutions for the 

complete system (4.1) is also based on Zubov's theory. But in this case, the change of 
variables (4.9), (4.10) is more complicated. 

I would like to thank A.P. Markeyev for suggesting the topic and for useful comments. 
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